Fernando Garcia

Home     Research     Blog     Other     About me


PHYS405 - Electricity & Magnetism I

Spring 2024

Problem 4.14

When you polarize a neutral dielectric, the charge moves a bit, but the total remains zero.

This fact should be reflected in the bound charges σb and ρb.

Prove from Eqs. 4.11 and 4.12 that the total bound charge vanishes.

Let's start by recalling that the bound charges are given by (Given some polarization P)

σb=Pn^

And

ρb=P

Where the first denotes surface (bound) charge (density) and the latter volume (bound) charge (density).

Now that we have the (bound) densities, the total bound charge is given by integrals of the aforementioned densities:

Qtotal,bound=Sσbda+Vρbdτ

But we know what σb and ρb are, so let's replace them in the above to get:

Qtotal,bound=SPn^VPdτ

But the divergence theorem tells us that closed surface integrals are related to volume integrals through a divergence:

VPdτ=SPda

Therefore, the above expression vanishes and we conclude that

Qtotal,bound=0

Back to PHYS405 site